/**
* @file
* @brief The implementation of [Hamilton's
* cycle](https://en.wikipedia.org/wiki/Hamiltonian_path) dynamic solution for
* vertices number less than 20.
* @details
* I use \f$2^n\times n\f$ matrix and for every \f$[i, j]\f$ (\f$i < 2^n\f$ and
* \f$j < n\f$) in the matrix I store `true` if it is possible to get to all
* vertices on which position in `i`'s binary representation is `1` so as
* \f$j\f$ would be the last one.
*
* In the the end if any cell in \f$(2^n - 1)^{\mbox{th}}\f$ row is `true` there
* exists hamiltonian cycle.
*
* @author [vakhokoto](https://github.com/vakhokoto)
* @author [Krishna Vedala](https://github.com/kvedala)
*/
#include <cassert>
#include <iostream>
#include <vector>
/**
* The function determines if there is a hamilton's cycle in the graph
*
* @param routes nxn boolean matrix of \f$[i, j]\f$ where \f$[i, j]\f$ is `true`
* if there is a road from \f$i\f$ to \f$j\f$
* @return `true` if there is Hamiltonian cycle in the graph
* @return `false` if there is no Hamiltonian cycle in the graph
*/
bool hamilton_cycle(const std::vector<std::vector<bool>> &routes) {
const size_t n = routes.size();
// height of dp array which is 2^n
const size_t height = 1 << n;
std::vector<std::vector<bool>> dp(height, std::vector<bool>(n, false));
// to fill in the [2^i, i] cells with true
for (size_t i = 0; i < n; ++i) {
dp[1 << i][i] = true;
}
for (size_t i = 1; i < height; i++) {
std::vector<size_t> zeros, ones;
// finding positions with 1s and 0s and separate them
for (size_t pos = 0; pos < n; ++pos) {
if ((1 << pos) & i) {
ones.push_back(pos);
} else {
zeros.push_back(pos);
}
}
for (auto &o : ones) {
if (!dp[i][o]) {
continue;
}
for (auto &z : zeros) {
if (!routes[o][z]) {
continue;
}
dp[i + (1 << z)][z] = true;
}
}
}
bool is_cycle = false;
for (size_t i = 0; i < n; i++) {
is_cycle |= dp[height - 1][i];
if (is_cycle) { // if true, all subsequent loop will be true. hence
// break
break;
}
}
return is_cycle;
}
/**
* this test is testing if ::hamilton_cycle returns `true` for
* graph: `1 -> 2 -> 3 -> 4`
* @return None
*/
static void test1() {
std::vector<std::vector<bool>> arr{
std::vector<bool>({true, true, false, false}),
std::vector<bool>({false, true, true, false}),
std::vector<bool>({false, false, true, true}),
std::vector<bool>({false, false, false, true})};
bool ans = hamilton_cycle(arr);
std::cout << "Test 1... ";
assert(ans);
std::cout << "passed\n";
}
/**
* this test is testing if ::hamilton_cycle returns `false` for
* \n graph:<pre>
* 1 -> 2 -> 3
* |
* V
* 4</pre>
* @return None
*/
static void test2() {
std::vector<std::vector<bool>> arr{
std::vector<bool>({true, true, false, false}),
std::vector<bool>({false, true, true, true}),
std::vector<bool>({false, false, true, false}),
std::vector<bool>({false, false, false, true})};
bool ans = hamilton_cycle(arr);
std::cout << "Test 2... ";
assert(!ans); // not a cycle
std::cout << "passed\n";
}
/**
* this test is testing if ::hamilton_cycle returns `true` for
* clique with 4 vertices
* @return None
*/
static void test3() {
std::vector<std::vector<bool>> arr{
std::vector<bool>({true, true, true, true}),
std::vector<bool>({true, true, true, true}),
std::vector<bool>({true, true, true, true}),
std::vector<bool>({true, true, true, true})};
bool ans = hamilton_cycle(arr);
std::cout << "Test 3... ";
assert(ans);
std::cout << "passed\n";
}
/**
* Main function
*
* @param argc commandline argument count (ignored)
* @param argv commandline array of arguments (ignored)
*/
int main(int argc, char **argv) {
test1();
test2();
test3();
return 0;
}