/**
* @file
* @brief Implementation for the [Intersection of two sorted
* Arrays](https://en.wikipedia.org/wiki/Intersection_(set_theory))
* algorithm.
* @details The intersection of two arrays is the collection of all the elements
* that are common in both the first and second arrays. This implementation uses
* ordered arrays, and an algorithm to correctly order them and return the
* result as a new array (vector).
* @see union_of_two_arrays.cpp
* @author [Alvin](https://github.com/polarvoid)
*/
#include <algorithm> /// for std::sort
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector
/**
* @namespace operations_on_datastructures
* @brief Operations on Data Structures
*/
namespace operations_on_datastructures {
/**
* @brief Prints the values of a vector sequentially, ending with a newline
* character.
* @param array Reference to the array to be printed
* @returns void
*/
void print(const std::vector<int32_t> &array) {
for (int32_t i : array) {
std::cout << i << " "; /// Print each value in the array
}
std::cout << "\n"; /// Print newline
}
/**
* @brief Gets the intersection of two sorted arrays, and returns them in a
* vector.
* @details An algorithm is used that compares the elements of the two vectors,
* incrementing the index of the smaller of the two. If the elements are the
* same, the element is appended to the result array to be returned.
* @param first A std::vector of sorted integer values
* @param second A std::vector of sorted integer values
* @returns A std::vector of the intersection of the two arrays, in ascending
* order
*/
std::vector<int32_t> get_intersection(const std::vector<int32_t> &first,
const std::vector<int32_t> &second) {
std::vector<int32_t> res; ///< Vector to hold the intersection
size_t f_index = 0; ///< Index for the first array
size_t s_index = 0; ///< Index for the second array
size_t f_length = first.size(); ///< Length of first array
size_t s_length = second.size(); ///< Length of second array
while (f_index < f_length && s_index < s_length) {
if (first[f_index] < second[s_index]) {
f_index++; ///< Increment index of second array
} else if (first[f_index] > second[s_index]) {
s_index++; ///< Increment index of second array
} else {
if ((res.size() == 0) || (first[f_index] != res.back())) {
res.push_back(
first[f_index]); ///< Add the element if it is unique
}
f_index++; ///< Increment index of first array
s_index++; ///< Increment index of second array too
}
}
return res;
}
} // namespace operations_on_datastructures
/**
* @namespace tests
* @brief Testcases to check intersection of Two Arrays.
*/
namespace tests {
using operations_on_datastructures::get_intersection;
using operations_on_datastructures::print;
/**
* @brief A Test to check an edge case (two empty arrays)
* @returns void
*/
void test1() {
std::cout << "TEST CASE 1\n";
std::cout << "Intialized a = {} b = {}\n";
std::cout << "Expected result: {}\n";
std::vector<int32_t> a = {};
std::vector<int32_t> b = {};
std::vector<int32_t> result = get_intersection(a, b);
assert(result == a); ///< Check if result is empty
print(result); ///< Should only print newline
std::cout << "TEST PASSED!\n\n";
}
/**
* @brief A Test to check an edge case (one empty array)
* @returns void
*/
void test2() {
std::cout << "TEST CASE 2\n";
std::cout << "Intialized a = {} b = {2, 3}\n";
std::cout << "Expected result: {}\n";
std::vector<int32_t> a = {};
std::vector<int32_t> b = {2, 3};
std::vector<int32_t> result = get_intersection(a, b);
assert(result == a); ///< Check if result is equal to a
print(result); ///< Should only print newline
std::cout << "TEST PASSED!\n\n";
}
/**
* @brief A Test to check correct functionality with a simple test case
* @returns void
*/
void test3() {
std::cout << "TEST CASE 3\n";
std::cout << "Intialized a = {4, 6} b = {3, 6}\n";
std::cout << "Expected result: {6}\n";
std::vector<int32_t> a = {4, 6};
std::vector<int32_t> b = {3, 6};
std::vector<int32_t> result = get_intersection(a, b);
std::vector<int32_t> expected = {6};
assert(result == expected); ///< Check if result is correct
print(result); ///< Should print 6
std::cout << "TEST PASSED!\n\n";
}
/**
* @brief A Test to check correct functionality with duplicate values
* @returns void
*/
void test4() {
std::cout << "TEST CASE 4\n";
std::cout << "Intialized a = {4, 6, 6, 6} b = {2, 4, 4, 6}\n";
std::cout << "Expected result: {4, 6}\n";
std::vector<int32_t> a = {4, 6, 6, 6};
std::vector<int32_t> b = {2, 4, 4, 6};
std::vector<int32_t> result = get_intersection(a, b);
std::vector<int32_t> expected = {4, 6};
assert(result == expected); ///< Check if result is correct
print(result); ///< Should print 4 6
std::cout << "TEST PASSED!\n\n";
}
/**
* @brief A Test to check correct functionality with a harder test case
* @returns void
*/
void test5() {
std::cout << "TEST CASE 5\n";
std::cout << "Intialized a = {1, 2, 3, 4, 6, 7, 9} b = {2, 3, 4, 5}\n";
std::cout << "Expected result: {2, 3, 4}\n";
std::vector<int32_t> a = {1, 2, 3, 4, 6, 7, 9};
std::vector<int32_t> b = {2, 3, 4, 5};
std::vector<int32_t> result = get_intersection(a, b);
std::vector<int32_t> expected = {2, 3, 4};
assert(result == expected); ///< Check if result is correct
print(result); ///< Should print 2 3 4
std::cout << "TEST PASSED!\n\n";
}
/**
* @brief A Test to check correct functionality with an array sorted using
* std::sort
* @returns void
*/
void test6() {
std::cout << "TEST CASE 6\n";
std::cout << "Intialized a = {1, 3, 3, 2, 5, 9, 4, 7, 3, 2} ";
std::cout << "b = {11, 3, 7, 8, 6}\n";
std::cout << "Expected result: {3, 7}\n";
std::vector<int32_t> a = {1, 3, 3, 2, 5, 9, 4, 7, 3, 2};
std::vector<int32_t> b = {11, 3, 7, 8, 6};
std::sort(a.begin(), a.end()); ///< Sort vector a
std::sort(b.begin(), b.end()); ///< Sort vector b
std::vector<int32_t> result = get_intersection(a, b);
std::vector<int32_t> expected = {3, 7};
assert(result == expected); ///< Check if result is correct
print(result); ///< Should print 3 7
std::cout << "TEST PASSED!\n\n";
}
} // namespace tests
/**
* @brief Function to test the correctness of get_intersection() function
* @returns void
*/
static void test() {
tests::test1();
tests::test2();
tests::test3();
tests::test4();
tests::test5();
tests::test6();
}
/**
* @brief main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}