package com.thealgorithms.dynamicprogramming;
/**
* Recursive Solution for 0-1 knapsack with memoization
* This method is basically an extension to the recursive approach so that we
* can overcome the problem of calculating redundant cases and thus increased
* complexity. We can solve this problem by simply creating a 2-D array that can
* store a particular state (n, w) if we get it the first time.
*/
public class KnapsackMemoization {
int knapSack(int W, int wt[], int val[], int N) {
// Declare the table dynamically
int dp[][] = new int[N + 1][W + 1];
// Loop to initially filled the
// table with -1
for (int i = 0; i < N + 1; i++) {
for (int j = 0; j < W + 1; j++) {
dp[i][j] = -1;
}
}
return knapSackRec(W, wt, val, N, dp);
}
// Returns the value of maximum profit using Recursive approach
int knapSackRec(int W, int wt[],
int val[], int n,
int[][] dp) {
// Base condition
if (n == 0 || W == 0) {
return 0;
}
if (dp[n][W] != -1) {
return dp[n][W];
}
if (wt[n - 1] > W) {
// Store the value of function call stack in table
dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
return dp[n][W];
} else {
// Return value of table after storing
return dp[n][W] = Math.max((val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
knapSackRec(W, wt, val, n - 1, dp));
}
}
}