// Program to calculate length of longest increasing subsequence in an array
// in O(n log n)
// tested on : https://cses.fi/problemset/task/1145/
#include <iostream>
using namespace std;
int LIS(int arr[], int n) {
set<int> active; // The current built LIS.
active.insert(arr[0]);
// Loop through every element.
for (int i = 1; i < n; ++i) {
auto get = active.lower_bound(arr[i]);
if (get == active.end()) {
active.insert(arr[i]);
} // current element is the greatest so LIS increases by 1.
else {
int val = *get; // we find the position where arr[i] will be in the
// LIS. If it is in the LIS already we do nothing
if (val > arr[i]) {
// else we remove the bigger element and add a smaller element
// (which is arr[i]) and continue;
active.erase(get);
active.insert(arr[i]);
}
}
}
return active.size(); // size of the LIS.
}
int main(int argc, char const* argv[]) {
int n;
cout << "Enter size of array: ";
cin >> n;
int a[n];
cout << "Enter array elements: ";
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
cout << LIS(a, n) << endl;
return 0;
}