/**
* @file
* @brief Simple implementation of [modular multiplicative
* inverse](https://en.wikipedia.org/wiki/Modular_multiplicative_inverse)
*
* @details
* this algorithm calculates the modular inverse x^{-1} \mod y iteratively
*/
#include <cassert> /// for assert
#include <iostream> /// for IO operations
/**
* @brief Function imod
* Calculates the modular inverse of x with respect to y, x^{-1} \mod y
* @param x number
* @param y number
* @returns the modular inverse
*/
uint64_t imod(uint64_t x, uint64_t y) {
uint64_t aux = 0; // auxiliary variable
uint64_t itr = 0; // iteration counter
do { // run the algorithm while not find the inverse
aux = y * itr + 1;
itr++;
} while (aux % x); // while module aux % x non-zero
return aux / x;
}
/**
* @brief self-test implementations
* @returns void
*/
static void test() {
std::cout << "First case testing... \n";
// for a = 3 and b = 11 return 4
assert(imod(3, 11) == 4);
std::cout << "\nPassed!\n";
std::cout << "Second case testing... \n";
// for a = 3 and b = 26 return 9
assert(imod(3, 26) == 9);
std::cout << "\nPassed!\n";
std::cout << "Third case testing... \n";
// for a = 7 and b = 26 return 15
assert(imod(7, 26) == 15);
std::cout << "\nPassed!\n";
std::cout << "\nAll test cases have successfully passed!\n";
}
/**
* @brief Main function
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
};