import os
import sys
from . import rsa_key_generator as rkg
DEFAULT_BLOCK_SIZE = 128
BYTE_SIZE = 256
def get_blocks_from_text(
message: str, block_size: int = DEFAULT_BLOCK_SIZE
) -> list[int]:
message_bytes = message.encode("ascii")
block_ints = []
for block_start in range(0, len(message_bytes), block_size):
block_int = 0
for i in range(block_start, min(block_start + block_size, len(message_bytes))):
block_int += message_bytes[i] * (BYTE_SIZE ** (i % block_size))
block_ints.append(block_int)
return block_ints
def get_text_from_blocks(
block_ints: list[int], message_length: int, block_size: int = DEFAULT_BLOCK_SIZE
) -> str:
message: list[str] = []
for block_int in block_ints:
block_message: list[str] = []
for i in range(block_size - 1, -1, -1):
if len(message) + i < message_length:
ascii_number = block_int // (BYTE_SIZE**i)
block_int = block_int % (BYTE_SIZE**i)
block_message.insert(0, chr(ascii_number))
message.extend(block_message)
return "".join(message)
def encrypt_message(
message: str, key: tuple[int, int], block_size: int = DEFAULT_BLOCK_SIZE
) -> list[int]:
encrypted_blocks = []
n, e = key
for block in get_blocks_from_text(message, block_size):
encrypted_blocks.append(pow(block, e, n))
return encrypted_blocks
def decrypt_message(
encrypted_blocks: list[int],
message_length: int,
key: tuple[int, int],
block_size: int = DEFAULT_BLOCK_SIZE,
) -> str:
decrypted_blocks = []
n, d = key
for block in encrypted_blocks:
decrypted_blocks.append(pow(block, d, n))
return get_text_from_blocks(decrypted_blocks, message_length, block_size)
def read_key_file(key_filename: str) -> tuple[int, int, int]:
with open(key_filename) as fo:
content = fo.read()
key_size, n, eor_d = content.split(",")
return (int(key_size), int(n), int(eor_d))
def encrypt_and_write_to_file(
message_filename: str,
key_filename: str,
message: str,
block_size: int = DEFAULT_BLOCK_SIZE,
) -> str:
key_size, n, e = read_key_file(key_filename)
if key_size < block_size * 8:
sys.exit(
"ERROR: Block size is %s bits and key size is %s bits. The RSA cipher "
"requires the block size to be equal to or greater than the key size. "
"Either decrease the block size or use different keys."
% (block_size * 8, key_size)
)
encrypted_blocks = [str(i) for i in encrypt_message(message, (n, e), block_size)]
encrypted_content = ",".join(encrypted_blocks)
encrypted_content = f"{len(message)}_{block_size}_{encrypted_content}"
with open(message_filename, "w") as fo:
fo.write(encrypted_content)
return encrypted_content
def read_from_file_and_decrypt(message_filename: str, key_filename: str) -> str:
key_size, n, d = read_key_file(key_filename)
with open(message_filename) as fo:
content = fo.read()
message_length_str, block_size_str, encrypted_message = content.split("_")
message_length = int(message_length_str)
block_size = int(block_size_str)
if key_size < block_size * 8:
sys.exit(
"ERROR: Block size is %s bits and key size is %s bits. The RSA cipher "
"requires the block size to be equal to or greater than the key size. "
"Did you specify the correct key file and encrypted file?"
% (block_size * 8, key_size)
)
encrypted_blocks = []
for block in encrypted_message.split(","):
encrypted_blocks.append(int(block))
return decrypt_message(encrypted_blocks, message_length, (n, d), block_size)
def main() -> None:
filename = "encrypted_file.txt"
response = input(r"Encrypt\Decrypt [e\d]: ")
if response.lower().startswith("e"):
mode = "encrypt"
elif response.lower().startswith("d"):
mode = "decrypt"
if mode == "encrypt":
if not os.path.exists("rsa_pubkey.txt"):
rkg.make_key_files("rsa", 1024)
message = input("\nEnter message: ")
pubkey_filename = "rsa_pubkey.txt"
print(f"Encrypting and writing to {filename}...")
encrypted_text = encrypt_and_write_to_file(filename, pubkey_filename, message)
print("\nEncrypted text:")
print(encrypted_text)
elif mode == "decrypt":
privkey_filename = "rsa_privkey.txt"
print(f"Reading from {filename} and decrypting...")
decrypted_text = read_from_file_and_decrypt(filename, privkey_filename)
print("writing decryption to rsa_decryption.txt...")
with open("rsa_decryption.txt", "w") as dec:
dec.write(decrypted_text)
print("\nDecryption:")
print(decrypted_text)
if __name__ == "__main__":
main()
RSA (Rivest–Shamir–Adleman) is one of the first public-key cryptosystems and is widely used for secure data transmission. In such a cryptosystem, the encryption key is public and distinct from the decryption key which is kept secret (private).
Select 2 Prime Numbers - p & q
Calculate n
as $$n = p * q$$
In number theory, Euler's Totient function counts the positive integers up to a given integer n that are relatively prime to n.
Calculate Euler's Totient Function of n. $$φ(n) = (p-1) * (q-1)$$
Note, that Euler's Totient works only if $p$ and $q$ are Prime Numbers.
Select Public Key - $e$ , such that $e$ and $φ(n)$ are Co-primes, i.e, $$\gcd(e , φ(n))=1$$
Calculate Private Key, $d$ such that $$(d * e) \mod φ(n) = 1$$
( e , n )
which is known to all in the network.( d , n )
which is known ONLY to the User to whom message is to be sent.The Cipher Text, C is generated from the plaintext, M using the public key, e as:
$$C = M^e \mod n$$
The Plain Text, M is generated from the ciphertext, C using the private key, d as:
$$M = C^d \mod n$$
The Encryption and Decryption mechanism block diagram with sample message encryption.
The explanation for the above example,
from sympy import *
import math
#Generate p and q
p = randprime(1, 10)
q = randprime(11, 20)
# Generate n and l(n)
n = p*q
l = (p-1)*(q-1)
# Function to test Co-Primality for generation of list of Public Keys
def isCoPrime(x):
return math.gcd(l, x) == 1
# Function to find mod Inverese of e withl(n) to generate d
def modInverse(e, l):
e = e % l
for x in range(1, l):
if (e * x) % l == 1:
return x
return 1
# List for Co-Primes
listOfCP = []
for i in range(1, l):
if isCoPrime(i) == True:
listOfCP.append(i)
# Print values of P, Q, N, L
print("Value of P = ", p)
print("Value of Q = ", q)
print("Value of N = ", n)
print("Value of L = ", l)
print(" ")
# Print List of Co-Primes for e
print("List of Available Public Keys")
print(listOfCP)
print(" ")
# select a Public Key from list of Co-Primes
e = int(input("Select Public Key from the Above List ONLY: "))
# Value of d
d = modInverse(e, l)
print(" ")
# Print Public and Private Keys
print("PUBLIC KEY : { e , n } = {", e ,",", n , "}")
print("PRIVATE KEY : { d , n } = {", d ,",", n , "}")
print(" ")
# Encryption Algorithm
def encrypt(plainText):
return (plainText**e)%n
# Decryption Algorithm
def decrypt(cipherText):
pvtKey = int(input("Enter your Private Key: "))
return (cipherText**pvtKey)%n
# Driver Code
# Message Input
pt = int(input('Enter the Plain Text: '))
print("CipherText: ", encrypt(pt))
print(" ")
# CipherText Input
ct = int(input('Enter the Cipher Text: '))
print("PlainText: ", decrypt(ct))
Value of P = 7
Value of Q = 19
Value of N = 133
Value of L = 108
List of Available Public Keys
[1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107]
Select Public Key from the Above List ONLY: 47
PUBLIC KEY : { e , n } = { 47 , 133 }
PRIVATE KEY : { d , n } = { 23 , 133 }
Enter the Plain Text: 51
CipherText: 116
Enter the Cipher Text: 116
Enter your Private Key: 23
PlainText: 51