{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The trapezium rule is a way of estimating the area under a curve. We know that the area under a curve is given by integration, so the trapezium rule gives a method of estimating integrals."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's check this method for the next function: $$f(x) = ({e^x / 2})*(cos(x)-sin(x))$$ with $\\varepsilon = 0.001$"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Result: -22.12539445092147\n"
]
}
],
"source": [
"import math \n",
"import numpy as np\n",
"\n",
"n = 4 \n",
"a = 2.\n",
"b = 3.\n",
"def f(x):\n",
" return (math.e**x / 2)*(math.cos(x)-math.sin(x))\n",
"\n",
"def trapezoid(a,b,n):\n",
" z = (b-a)/n\n",
" i=a\n",
" s=0\n",
" while (i+z)<b:\n",
" s=s+f(i)\n",
" i=i+z \n",
" s=z*(f(a)+f(b))/2+s\n",
" print('Result: ',s)\n",
" \n",
"trapezoid(a,b,n)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
The trapezium rule is a way of estimating the area under a curve. We know that the area under a curve is given by integration, so the trapezium rule gives a method of estimating integrals.
Let's check this method for the next function: $$f(x) = ({e^x / 2})*(cos(x)-sin(x))$$ with $\varepsilon = 0.001$
import math
import numpy as np
n = 4
a = 2.
b = 3.
def f(x):
return (math.e**x / 2)*(math.cos(x)-math.sin(x))
def trapezoid(a,b,n):
z = (b-a)/n
i=a
s=0
while (i+z)<b:
s=s+f(i)
i=i+z
s=z*(f(a)+f(b))/2+s
print('Result: ',s)
trapezoid(a,b,n)
Result: -22.12539445092147